The Crystal Structure of 2,11,20-Trithia[3.3.3](1,3,5)cyclophane

By A.W. Hanson and E. W. Macaulay*
Biochemistry Laboratory, National Research Council of Canada, Ottawa, Canada K1A OR6

(Received 10 September 1971)

Abstract

Crystals of $2,11,20$-trithia[3.3.3] (1,3,5)cyclophane, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~S}_{3}$, are monoclinic, probably $P 2_{1} / c$, with $a=13 \cdot 19$ (2), $b=33 \cdot 35$ (5), $c=7 \cdot 06$ (1) $\AA, \beta=93 \cdot 18(5)^{\circ}, Z=8$. A subset of weak reflexions is ignored, and the crystal structure is described in terms of a unit cell for which b is halved, and for which the space group is $C 2 / c$. Three-dimensional intensity data were recorded with a four-circle diffractometer and scintillation counter. The approximate structure was deduced from the Patterson synthesis and refined by block-diagonal least-squares analysis to a final R index of 0.064 . Although the structure is necessarily disordered, the essential features of the molecule are revealed. The phenyl rings are parallel, and overlap each other quite precisely with an interplanar separation of $3.19 \AA$. There is some evidence of rapid flipping of one of the C-S-C linkages.

Introduction

2,11,20-Trithia[3.3.3] (1,3,5)cyclophane is one of a number of thia-bridged cyclophanes prepared by Professor Boekelheide and associates, and used in the synthesis of corresponding $\mathrm{C}=\mathrm{C}$ bridged cyclophanes (Boekelheide \& Hollins, 1970; Mitchell \& Boekelheide, 1970; Boekelheide \& Lawson, 1970). The material has also been prepared by Vögtle (1970), who reports that the nuclear magnetic resonance (n.m.r.) spectrum consists only of two sharp peaks, assigned to the aromatic and to the methylenic protons. The implied equivalence of the methylenic protons is difficult to reconcile with any static model of the molecule, for which the two conformational isomers (a) and (b) seem possible. Interconversion of these isomers can

(a)

(b)
occur if one or more of the bridges can be induced to flip from one stable position to another, and if such flipping occurred rapidly enough, equivalence of the protons would be inferred. The conformation in the crystal is found to be exclusively (a), but the diffraction effects are consistent with temperature-dependent flipping of one of the bridges.

[^0]
Experimental

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~S}_{3}$; F.W. 330.5; Monoclinic, $a=13 \cdot 19$ (2), $b=33.35$ (5), $\quad c=7.06$ (1) $\AA, \quad \beta=93.18$ (5) ${ }^{\circ} ; \quad V=$ $3102 \AA^{-3} ; \quad D_{m}=1.39(2) ; \quad Z=8, \quad D_{x}=1 \cdot 41 ; \quad \mu=$ $40.2 \mathrm{~cm}^{-1}, \lambda .(\mathrm{Cu} K \alpha)=1.5418 \AA$.

The absences noted on Weissenberg and precession photographs are consistent with the space group $P 2_{1} / c$. However, it was found that the reflexions could be divided into two subsets, conveniently designated as 'strong' and 'weak'. Reflexions in the latter subset were invariably very weak or absent, and because this subset includes the systematic absences characteristic of $P 2_{1} / c$, the space group assignment must be regarded as tentative. (At the working temperature of $20^{\circ} \mathrm{C}$ it was not possible to distinguish between $P 2_{1} / a$ and $P 2_{1} / c$, there being no observable $h 0 l$ reflexions with either h or l odd. However, a few very weak reflexions with h odd appeared on a precession photograph of this zone taken at $-180^{\circ} \mathrm{C}$.) Reflexions in the 'strong' subset (for which the intensity distribution was more typical) can be indexed for a monoclinic cell identical with that specified above except that the b axis is halved. The space group characteristic of this subset is $C c$ or $C 2 / c$. The approximate structure to be described is consistent with $C 2 / c$.
The crystalline material consisted of colourless needles, elongated along \mathbf{c}. The specimen used for data collection was a fragment of such a needle, of dimensions $0.04 \times 0.04 \times 0.18 \mathrm{~mm}$, mounted about the long axis. The intensities were measured with a Picker fourcircle diffractometer and scintillation counter, using nickel-filtered $\mathrm{Cu} K \alpha$ radiation and pulse-height discrimination. The $\theta-2 \theta$ scan method was used, with $20-$ second background counts at the beginning and end of each scan. The scan range was 2° for $2 \theta<100^{\circ}$, and 3° otherwise. Reflexions were regarded as observed only if the net count exceeded 7 (deca)counts and 10% of the corresponding background count. Within the re-
gion explored $\left(2 \theta \leq 130^{\circ} ; \sin \theta / \lambda \leq 0.59\right), 837$ of a possible 1328 reflexions were observed. The intensities were corrected for absorption, using a program of Ahmed (1970); corrections ranged from 1.23 to 1.43 .

No attempt was made to measure all the reflexions of the weak subset. However, this subset was partially characterized by the following procedures.
(1) All independent reflexions with $2 \theta \leq 50^{\circ}$ were measured. Of 399 accessible reflexions in the weak subset, 147 were observed above background, and their average intensity was 22 (deca)counts. Of 129 accessible reflexions in the strong subset, 121 were observed, and their average intensity was 1730 (deca)counts.
(2) Precession photographs of the $h 0 l$ and 0 kl zones were taken both at room temperature and at $-180^{\circ} \mathrm{C}$. There was no obvious change in the intensities of the strong subset, but those of the weak subset were about five times more intense at the lower temperature. The distribution of relative intensity within each subset did not appear to change appreciably with temperature. The effect of temperature on the weak subset was found to be completely reversible. These reflexions are invariably sharp when observed, and are indistinguishable in shape and size from those of the strong subset.
(3) The intensities of 002 (a strong reflexion of the strong subset) and 012 (one of the strongest reflexions of the weak subset) were measured diffractometrically at nominal temperatures of $-180,20$, and $80^{\circ} \mathrm{C}$. The net counts recorded at these temperatures were: 002:

32,200, 32,800 and 31,400 (deca)counts; 012: 1030(11), 190(5) and 7(3) (deca)counts.

Structure determination

The space group $C 2 / c$ was assumed for the approximate structure defined by the strong subset of reflexions. This assumption demands that the molecule occupies either a centre of symmetry or a twofold axis. The molecule cannot have a centre of symmetry and (as it turns out) does not have a twofold axis. Any structure conforming to this space group must therefore be disordered.
A reasonable trial structure, disordered by twofold rotation, was deduced from the Patterson synthesis and refined by block-diagonal least squares. The program used was that of Ahmed, Hall, Pippy \& Huber (1966), which minimizes the quantity $\sum w \Delta F^{2}$. The weighting scheme (chosen to ensure reasonable cor.stancy of the weighted residual as a function of F_{o} and 2θ) was $w=w_{1} w_{2}$ where

$$
\begin{array}{rlrl}
w_{1} & =\left(F_{o} / 25\right)^{2} & & \text { for } F_{o}<25 \\
& =25 / F_{o} & \text { for } F_{o} \geq 25 \\
w_{2} & =2.5 \sin ^{2} \theta & \text { for } \sin ^{2} \theta<0.4 \\
& =1 & & \text { for } \sin ^{2} \theta \geq 0.4 .
\end{array}
$$

(The nominal minimum value of F_{o} is 8 .)
The hydrogen atoms were assumed to lie in reason-

Table 1. Final atomic parameters and their e.s.d.'s
These are referred to a unit cell for which $b=16.68 \AA$, and the space group is $C 2 / c$. $S(2)$ is treated as a half-atom. The quantities given are fractional coordinates $\times 10^{4}$ for non-hydrogen, $\times 10^{3}$ for hydrogen atoms [equivalent positions $\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right) \pm(x, y, z$; $\left.\left.x, \bar{y}, \frac{1}{2}+z\right)\right] ; U_{i j} \times 10^{4} \AA^{2}$, for non-hydrogen atoms (T.F. $=\exp \left[-2 \pi^{2}\left(U_{11} a^{* 2} h^{2}+++2 U_{12} a^{*} b^{*} h k++\right.\right.$)]; r.m.s. displacements D_{i} along the principal axes of the vibration ellipsoids, in \AA; isoiropic Debye-Waller factors B, in \AA^{2} (hydrogen atoms only).

Atom			x	y	z	U_{11}	U_{12}	U_{13}	U_{22}	U_{23}	U_{33}
S (2)			598(3)	4263(2)	2589 (5)	885 (20)	-65(14)	254(18)	360 (14)	-8(16)	1066 (24)
S(20)	[S(11)]	1918(1)	617(1)	3702(2)	583(7)	145 (8)	92(6)	626(7)	276(8)	756(8)
C(3)	[C(1')		262 (6)	3868 (4)	589 (14)	1025(54)	165(37)	592(50)	552 (38)	369(41)	1402 (70)
C(4)	[C(17	')]	322 (4)	2975 (4)	374 (8)	690(33)	116(28)	232(25)	562 (32)	202(27)	542(30)
C (5)	[C(18	')]	1180 (4)	2549 (3)	894 (7)	638(31)	-40(27)	188(23)	462 (27)	68(24)	448 (28)
C (6)	[C(13	') $]$	1196 (4)	1715 (3)	910(6)	508(26)	-17(23)	133(19)	504 (25)	-17(21)	273(22)
C(7)	[C(14)	')]	319(4)	1309(3)	319 (7)	574 (30)	6(25)	84 (20)	537 (30)	-89(23)	364 (25)
C(8)	[C(15	')]	-562(4)	1719 (4)	-190(6)	$554(30)$	50(27)	33(20)	785 (38)	2 (24)	250(23)
C(9)	[C(16	')]	-550(4)	2552(4)	-186(8)	678(35)	216(31)	151(25)	790(39)	211(28)	446 (30)
C(10)	[C(19	')]	-1545(5)	1283(5)	-585(8)	604(35)	-22(34)	-23(25)	1088(51)	-203(33)	472 (32)
C(21)	[C(12	')]	2120 (4)	1278(3)	1702(8)	467(29)	-24(25)	102(23)	589(31)	-4 (26)	537 (30)
Atom	D_{1}	D_{2}	D_{3}				Atom	X	y	z	B
S (2)	0.18	0.27	0.34				H(3a)	26(6)	412 (4)	-29(10)	5.0(1.7)
S(20)	0.19	0.24	0.32				H(3b)	98(9)	$399(7)$	118(16)	11.2(3.1)
							H(5)	182(4)	281(3)	136(7)	1.5(1.0)
C(3)	0.20	0.26	0.43				H(7)	34 (4)	80(4)	40 (8)	3.3(1.3)
C(4)	0.18	0.23	0.31				H(9)	-112(4)	285(3)	-42(8)	2.9(1.2)
C (5)	0.18	0.22	0.27				H(10a)	-150(4)	92(3)	-167(8)	3.0 (1.2)
C(6)	0.15	0.22	0.24				H(10b)	-209(5)	161(4)	-80(10)	$4.8(1.5)$
C(7)	0.18	0.24	0.24				H(2la)	266 (4)	163(4)	207(9)	3.7(1.3)
C (8)	0.16	0.23	0.28				H(2lb)	236 (4)	90(3)	81(7)	2.9(1.2)
C(9)	0.18	0.23	0.32								

able positions, and their parameters were refined, assuming isotropic thermal motion. The thermal motion of the non-hydrogen atoms was allowed to vary anisotropically. The atomic scattering-factor curves used were those of Hanson, Herman, Lea \& Skillman (1964) for non-hydrogen, and that of Stewart, Davidson \& Simpson (1965) for hydrogen. The curve for sulphur was corrected for the real part $\left(\Delta f^{\prime}=0 \cdot 3\right)$ of the anomalous scattering (International Tables for X ray Crystallography, 1962). In the final cycle of refinement no coordinate shift of a non-hydrogen atom exceeded one quarter of the corresponding estimated
standard deviation. The final parameters are given in Table 1. The observed and calculated structure amplitudes are listed in Table 2. The final agreement index ($R=\Sigma|\Delta F| / \Sigma\left|F_{o}\right|$) is 0.064 , for observed reflexions only. The agreement is satisfactory and, within the limiting assumptions involved, there can be no doubt of the essential correctness of the proposed structure.

Discussion

Details of the molecular structure are given in Fig. 1 and in Tables 3 and 4. Because of the disorder the aver-

Table 2. Observed and calculated structure amplitudes ($\times 10$)
An asterisk denotes the threshold value of an unobserved reflexion. The indexing assumes the subcell for which the b axis has been halved, and the space group is $C 2 / c$.

age molecule appears as two half-molecules related by twofold rotation. Except for $S(2)$, which appears as two half-atoms, and the adjacent carbon atoms, which are somewhat elongated, the superposition is reasonably precise, and the essential features of the molecule can be observed. The conformation is of type (a). The bond lengths not involving $S(2)$ and the adjacent carbon atoms are reasonable, but may be unreliable because of thermal motion (which may be non-rigid) and other systematic effects. The phenyl rings are planar, deviate from parallelism by less than 1°, and are separated by $3 \cdot 192 \AA$. The $\mathrm{C}-\mathrm{C}$ bonds of the bridges are inclined at 6° to the ring planes, indicating moderate strain. Except for the disordered bridge, the molecule has a non-crystallographic mirror plane midway between the phenyl rings. The exception is illustrated in

Fig. 1. Thermal ellipsoids of 30% probability, (a) viewed along \mathbf{c}, (b) viewed along \mathbf{b}. Overlapped atoms have been omitted for clarity. The dashed line represents a possible path for $S(2)$ during flipping.

Fig. $1(b) ; \mathbf{S}(2)$ lies $0.2 \AA$ from the median plane, and the long axes of the thermal-motion ellipsoids of the adjacent carbon atoms are inclined at about 40° to this plane.

Table 3. Bond lengths and some angles
Values in brackets involve the disordered bridge, and are unreliable.

	Distance	Mean
$\mathrm{C}(4)-\mathrm{C}(5)$	1.369 (8) \AA	$1 \cdot 38$ Å
$\mathrm{C}(5)-\mathrm{C}(6)$	1.391 (7)	
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 385$ (7)	
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 378$ (8)	
$\mathrm{C}(8)-\mathrm{C}(9)$	1.389 (9)	
$\mathrm{C}(9)-\mathrm{C}(4)$	1.388 (8)	
$\mathrm{C}(3)-\mathrm{C}(4)$	[1.499 (9)]	$1 \cdot 50$
$\mathrm{C}(6)-\mathrm{C}(21)$	1.502 (7)	
$\mathrm{C}(8)-\mathrm{C}(10)$	1.499 (8)	
$\mathrm{S}(2)-\mathrm{C}(1)$	[1.882 (10)]	
$\mathrm{S}(2)-\mathrm{C}(3)$	[1.599 (10)]	1.82
$\mathrm{S}(11)-\mathrm{C}(10)$	1.821 (7)	
$\mathrm{S}(11)$-C(12)	1.823 (6)	
$\mathrm{C}-\mathrm{H}$ distanc	ange from 0.7	1.04 Å.

	Angle	Mean
$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{C}(17)$	[117.0 (6) ${ }^{\text {a }}$]	
S(2)-C(3)-C(4)	[119.0 (6)]	
$\mathrm{S}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	115.6 (4) $\}$	115.4°
$\mathrm{S}(11)-\mathrm{C}(10)-\mathrm{C}(8)$	$115 \cdot 2$ (5) $\}$	
$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{C}(3)$	[108.2 (4)]	
$\mathrm{C}(10)-\mathrm{S}(11)-\mathrm{C}(12)$	104.7 (3)	

Table 4. Distances of some atoms from the mean plane of the phenyl ring $[\mathrm{C}(4) \cdots \mathrm{C}(9)]$
The equation of the plane is $0.3224 x^{\prime}+0.0077 y^{\prime}-0.9466 z^{\prime}+$ $0.0779=0$ for an orthogonal coordinate system, in \AA, for which $x^{\prime}\left\|\mathbf{a}, y^{\prime}\right\| \mathbf{b}, z^{\prime} \| \mathbf{c}^{*}$.

	Distance		Distance
$\mathbf{C}(4)$	$-0.001(6) \AA$	$\mathrm{C}(3)$	$-0.161(10) \AA$
$\mathrm{C}(5)$	$0.004(5)$	$\mathrm{C}(10)$	$-0.164(6)$
$\mathrm{C}(6)$	$-0.010(5)$	$\mathrm{C}(21)$	$-0.161(5)$
$\mathrm{C}(7)$	$0.013(5)$	$\mathrm{S}(2)$	$-1.374(4)$
$\mathrm{C}(8)$	$-0.009(5)$	$\mathrm{S}\left(2^{\prime}\right)$	$-1.761(4)$
$\mathrm{C}(9)$	$0.003(5)$	$\mathrm{S}(11)$	$-1.613(2)$
		$\mathrm{S}(20)$	$-1.616(2)$

The simplifying assumptions of the analysis ensure that the observed structure is disordered. However, it does not follow that the true structure is entirely ordered, and various considerations suggest that it is unlikely to be so. Conformational disorder of a similar sulphur bridge has been observed in the crystal structure of the related compound syn-2,11-dithia-9,18dimethyl[3.3]cyclophane (Davis \& Bernal, 1971). As mentioned earlier, rapid flipping of all bridges of the present compound is consistent with the otherwise anomalous n.m.r. results. The n.m.r. spectrum of an analogous nitrogen-bridged compound $\left\{N, N^{\prime}, N^{\prime \prime}\right.$-trito-syl-2,11,20-triaza[3.3.3] (1,3,5)cyclophane $\}$ has been studied over a range of temperatures by Vögtle \&

Fig. 2. Schematic representation of a possible ordered, lowtemperature structure. (a) The projection along c. The stronger outlines represent molecules at $z=\frac{3}{4}$, the weaker at $z=\frac{1}{4}$. (b) The projection along \mathbf{b} of the structure from $y=0$ to $y=\frac{1}{2}$. The stronger outlines represent molecules at about $y=\frac{3}{8}$, the weaker at about $y=\frac{1}{8}$.

Neumann (1970). At $35^{\circ} \mathrm{C}$ the spectrum is comparable to that of the present compound, with a single sharp peak attributable to the methylenic protons. At $-57^{\circ} \mathrm{C}$, however, this peak is found to have separated into an $A B$ system of two doublets. A reasonable interpretation of this result is that the rate of flipping of the bridges (limited in any case by the inertia of the massive tosyl groups) is sufficiently reduced at the lower temperature to reveal the non-equivalence of the methylenic protons.

Such considerations suggest that rapid, possibly
temperature-modulated flipping of the sulphur bridges is a normal condition which will occur unless prevented. Two of the bridges, $S(11)$ and $S(20)$, are stabilized by intermolecular contacts, but there is no obvious reason why $\mathrm{S}(2)$ should not flip, and there is in fact some indication that it does so. Experiments with a model suggest that, on flipping, the sulphur atom will not remain on the median plane, but will instead follow a curved path resembling that shown in Fig. $1(b)$. The departure from mirror symmetry, mentioned earlier, is thus consistent with flipping. The end points of the path, lying on the median plane, represent the stable positions of the sulphur atoms, while the observed positions are merely the most probable positions at a given time. In a dynamic situation these need not (and in the present case apparently do not) coincide. The curvilinear motion will be accompanied by cooperative movements of the adjacent carbon atoms (and, to a lesser extent of the remainder of the molecule), resulting in the observed elongation of their thermal motion ellipsoids.

It is thus reasonable to predict that the crystal structure should suffer some degree of disorder. It is in fact difficult to see why there should be any long-range order, such as is suggested by the presence of the subset of weak reflexions. However, it seems likely that at a sufficiently low temperature the flipping of $S(2)$ could be suppressed, and the structure ordered. It might then be as represented in Fig. 2, with space group $P 2_{1} / c$, and the molecules lying on the twofold screw axes. The subset of weak reflexions for this structure would result, for the most part, from the contributions of the sulphur atoms lying closest to the twofold screw axes. With increasing temperature, thermal flipping of these atoms would ensue, with an increasing probability of their occupying alternative positions. The intensities of the reflexions of the weak subset would be thereby reduced. At a sufficiently high temperature (apparently above $80^{\circ} \mathrm{C}$), the probability would approach 50%, and the reflexions of the weak subset would vanish. The translational elements of the screw axes would be lost. the b dimension would be halved, and the space group would become truly $C 2 / c$.

Computer programs used in this work are those of Ahmed, Hall, Pippy \& Huber (1966), Ahmed (1970) and Johnson (1965). The specimen material was kindly supplied by Professor V. Boekelheide.

References

Ahmed, F. R. (1970). Crystallographic Computing. Copenhagen: Munksgaard.
Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1966). NRC Crystallographic Programs for the IBM/360 System. World List of Crystallographic Computer Programs. 2nd ed., Appendix, p. 52.
Boekelheide, V. \& Hollins, R. A. (1970). J. Amer. Chem. Soc. $92,3512$.

Boekelheide, V. \& Lawson, J. A. (1970). J. Amer. Chem. Soc. 92, 1558.
Davis, B. R. \& Bernal, I. (1971). J. Chem. Soc. In the press.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP Report ORNL-3794, Oak Ridge National Laboratory, Tennessee.
Mitchell, R. H. \& Boekelheide, V. (1970). J. Amer. Chem. Soc. 92, 1555.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Vögtle, F. (1970). Liebigs Ann. 735, 193.
Vögtle, F. \& Neumann, P. (1970). Chem. Commun. p. 1464.

The Crystal and Molecular Structure of the 1:1 Compound Formed between Phosphorus Pentachloride and Tellurium Tetrachloride, $\mathrm{Cl}_{9} \mathrm{PTe}$

By P.H.Collins and M. Webster
Department of Chemistry, The University, Southampton, England

(Received 22 September 1971)

Abstract

The compound $\mathrm{Cl}_{9} \mathrm{PTe}$ crystallizes in the orthorhombic space group $I 2 m b$ with $Z=8$ and with cell dimensions $a=12 \cdot 10, b=16 \cdot 64, c=12 \cdot 52 \AA$. The structure contains discrete, approximately tetrahedral $\left[\mathrm{PCl}_{4}\right]^{+}$cations, and polymeric chain anions in which each tellurium atom is surrounded by a distorted octahedron of chlorine atoms. The chain consists of octahedra linked by sharing two cis vertices. Using visually estimated three-dimensional photographically recorded data the structure was refined to a final R of $0 \cdot 122$.

Introduction

The chemical status of the pentahalotellurate(IV) complex anions is by no means clear, even though several compounds have been prepared which apparently, from the elemental analysis, contain these ions. Tellurium tetrachloride is a tetrameric solid (Buss \& Krebs, 1970), containing six coordinate tellurium atoms [$3 \mathrm{Te}-\mathrm{Cl}$ at $2 \cdot 32 \AA$ (av) and $3 \mathrm{Te}-\mathrm{Cl}$ at $2 \cdot 93 \AA(\mathrm{av})]$. Under suitable conditions tellurium tetrachloride reacts readily with chloride ions to form the octahedral $\left[\mathrm{TeCl}_{6}\right]^{2-}$ ion. $\mathrm{Be}-$ cause of the chemical interest in species containing formal lone pairs of electrons, both the hexachloro- and hexabromotellurate(IV) ions have been structurally characterized by X-ray diffraction (Hazell, 1966; Das \& Brown, 1966) and subjected to assorted vibrational spectroscopic assaults (see, for example, Adams \& Downs, 1970; Adams \& Lloyd, 1971 and references therein). It seems plausible that the addition of chloride ions to TeCl_{4} occurs in a stepwise manner and that the species $\left[\mathrm{TeCl}_{5}\right]^{-}$should exist. Ultraviolet and visible spectroscopy in acetonitrile solution gave evidence for a species, possibly $\left[\mathrm{TeCl}_{5}\right]^{-}$, formed when equimolar amounts of TeCl_{4} and $\left[\mathrm{TeCl}_{6}\right]^{2-}$ are mixed (Beattie \& Chudzynska, 1967). Other studies have also provided evidence for $\left[\mathrm{TeX}_{5}\right]^{-}$ions ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) (Korewa \& Smagowski, 1965; Korewa \& Szponar, 1965), but since all these solution reactions are carried out in ionizing and potentially coordinating solvents, it may well be that such pentahalo species are sufficiently sol-
vated to influence the coordination geometry. The reported structure (Aynsley \& Hazell, 1963) of uronium pentachlorotellurate (IV) is incorrect (Beattie, Chudzynska, Hulme \& Aynsley, 1963).

In contrast to the chloro and bromo species the only known fluorocomplex of $\mathrm{Te}(\mathrm{IV})$ is the $\left[\mathrm{TeF}_{5}\right]^{-}$ion which exists as discrete square pyramidal anions both in solid KTeF_{5} (Edwards \& Mouty, 1969; Mastin, Ryan \& Asprey, 1970) and in solution from F-19 nuclear magnetic resonance experiments. The structure of β - $\mathrm{Me}_{2} \mathrm{TeI}_{2}$ consists of $\left[\mathrm{Me}_{3} \mathrm{Te}\right]^{+}\left[\mathrm{MeTeI}_{4}\right]^{-}$, the anion of which is square pyramidal with an axial methyl group (Einstein, Trotter \& Williston, 1967).

Solid compounds apparently containing the $\left[\mathrm{TeX}_{5}\right]^{-}$ ion include $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{TeCl}_{5}\right]$ (Creighton \& Green, 1968) and the mixed haloanion in $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{TeCl}_{2} \mathrm{Br}_{3}\right]$ (Ozin \& Vander Voet, 1971). The system $\mathrm{PCl}_{5}-\mathrm{TeCl}_{4}$ has been examined in AsCl_{3} (Gutmann, 1953) and POCl_{3} (Groeneveld, 1956; Groeneveld, 1952; Groeneveld \& Zuur, 1953) and evidence for the compounds $2 \mathrm{PCl}_{5}, \mathrm{TeCl}_{4}$; $\mathrm{PCl}_{5}, \mathrm{TeCl}_{4}$ and $\mathrm{PCl}_{5}, 2 \mathrm{TeCl}_{4}$ presented. Beattie has examined the vibrational spectra of the $1: 1$ compound $\mathrm{Cl}_{9} \mathrm{PTe}$ (Beattie, 1967; Beattie \& Chudzynska, 1967) which gave clear cut evidence for the $\left[\mathrm{PCl}_{4}\right]^{+}$ion. The structure of the anion is not clear but the observation of the chlorine isotope splitting pattern of v_{1} of the cation suggests a relatively simple structure.

An examination of the compound $\mathrm{Cl}_{9} \mathrm{PTe}$ was undertaken to establish the structure of the solid and in particular the nature of the anionic species present.

[^0]: * National Research Council of Canada postdoctorate fellow. Present address: Unilever Corporation, Port Sunlight, Wirral, Cheshire, England L62 4XN.

